

Matrix Inverse

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Table of contents

01

Introduction

03

Right Inverse

02

Left Inverse

04

Square Matrix Inverse

01

Introduction to Inverse with Square Matrix

Square Matrix Inverse

Definition

For $A \in M_{n \times n}$, if there exists a matrix $B \in M_{n \times n}$ such that $AB = BA = I_n$, then:

- A is invertible (or nonsingular)
- B is the inverse of A
- The inverse of A is denoted by $B = A^{-1}$
- A square matrix that does not have an inverse is called non-invertible (or singular)

Theorem

The inverse of a square matrix is unique.

Square matrix inverse and column independence

Theorem

A square matrix is invertible if and only if its columns are linearly independent

Proof

- Matrix is invertible => Columns are linearly independent
- Columns are linearly independent => Matrix is invertible

 \mathcal{C}

Left Inverse

Definition

A number x that satisfies xa=1 is called the inverse of a Inverse (i.e., $\frac{1}{a}$) exists if and only if $a \neq 0$, and is unique A matrix X that satisfies XA=I is called a left inverse of A If a left inverse exists we say that A is left-invertible

$$A: m \times n \Longrightarrow I: n \times n \Longrightarrow X: n \times m$$

Example

The matrix
$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$

Has two different left inverses:

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix},$$

$$C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

Solving linear equations with a left inverse

Method

- \square Suppose Ax = b, and A has a left inverse C
- ☐ So, multiplying the right-hand side by a left inverse yields the solution

 \supset

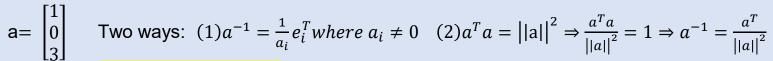
Left inverse of vector

Note

A non-zero column vector always has a left inverse.

Left inverse is not unique.

Example



Matrix with orthonormal columns $A^{-1} = A^T$

Lemma

Row vector does not have left inverse

$$a = [1 \ 0 \ 3]$$

Think about rank(BA), rank(I) with this theory: $rank(BA) \leq min(rank(A), rank(B))$

Left inverse and column

Theorem

A matrix is left-invertible if and only if its columns are linearly independent

Proof

- Has left invert => Columns are linearly independent
- Columns are linearly independent => Has left invert

 \mathcal{C}

Left inverse and column independence

Theorem

If A has a left inverse C then the columns of A are linearly independent

We'll see later that the converse is also true, so:

A matrix is left-invertible if and only if its columns are linearly independent

Matrix generalization of

A number is invertible if and only if it is nonzero

From Previous Theorem

Left-invertible matrices are all tall or square

Wide matrix is not always left invertible

Tall or square matrices can be left invertible

Example

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & -1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 4 \\ -2 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Right inverse and row independence

Theorem

A matrix is right-invertible if and only if its rows are linearly independent

Proof

O

Right inverses

Definition

A matrix X that satisfies AX = I is a right inverse of A

If a right inverse exists, we say that A is right-invertible

A is right-invertible if and only if A^T is left-invertible:

$$AX = I \Longrightarrow (AX)^T = I \Longrightarrow X^T A^T = I$$

So, we conclude:

A is right invertible if and only if its rows are linearly independent Right-invertible matrices are wide or square

Solving linear equations with a right inverse

Method

- \square Suppose A has a right inverse B
- \square Consider the (square or underdetermined) equations of Ax = b
- $\square x = Bb$ is a solution:
- $\square Ax = A(Bb) = (AB)b = Ib = b$
- \square So Ax = b has a solution for any b

Example

Same A, B, C in last example.

 C^T and B^T are both right inverses of A^T

Under-determined equations $A^T x = (1, 2)$ has (different) solutions.

$$B^{T}(1,2) = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}), \quad C^{T}(1,2) = (0, \frac{1}{2}, -1)$$

there are many other solutions as well

Conclusion: Left and Right Inverse

Linear equations and matrix inverse

Definition

Left-Invertible matrix: if X is a left inverse of A, then

$$Ax = b \Longrightarrow x = XAx = Xb$$

There is at most one solution using X (if there is a solution, it must be equal to Xb)

We must know in advance that there exists at least one solution

Why "at most"??

$$XA = I$$

$$\begin{cases} -y_1 + y_2 = -4\\ 0y_1 - y_2 = 3\\ 2y_1 + y_2 = 0 \end{cases}$$

$$A = \begin{bmatrix} -1 & 1\\ 0 & -1\\ 2 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & 2 \end{bmatrix}$$

$$\begin{cases} -y_1 + y_2 = -4 \\ 0y_1 - y_2 = 3 \\ 2y_1 + y_2 = 0 \end{cases} A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & 2 \end{bmatrix} \qquad \begin{bmatrix} -1 & 1 & -4 \\ 0 & -1 & 3 \\ 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Linear equations and matrix inverse

Note

- If the system of equations Ax = b is consistent, and if a matrix B exists such that BA = I, then the system of equations has a unique solution, namely x = Bb.
- \square Right-inversible matrix: if X is a right inverse of A, then there is <u>at least one</u> solution (x=Xb):

$$x = Xb \implies Ax = AXb = b$$

- To pursue these ides further, suppose that again we want to solve a system of linear equations, Ax = b. Assume now that we have another matrix, B, such that AB = I. Then we can write A(Bb) = (AB)b = Ib = b; hence Bb solves the equations Ax = b. This conclusion did not require a prior assumption that a solution exist; we have produced a solution. The argument does not reveal whether Bb is the only solution. There may be others.
- ☐ Invertible matrix: if A is invertible, then

$$Ax = b \iff x = A^{-1}b$$

There is a unique solution

Conclusion

- System of linear equations Ax = b:
 - A right inverse of A, say AB = I. Then Bb is a solution, as is verified by nothing A(Bb) = (AB)b = Ib = b.
 - Why don't need to check the consistency for using right inverse?
 - \circ A left inverse of A, say CA = I, then we can only conclude that Cb is the sole candidate for a solution; however, it must be checked by substitution to determine whether, in fact, it is a solution

04

Square Matrix Inverse

Inverse

Definition

For $A \in M_{n \times n}$, if there exists a matrix $B \in M_{n \times n}$ such that $AB = BA = I_n$, then:

- •A is invertible (or nonsingular)
- •B is the inverse of A
- •The inverse of A is denoted by $B = A^{-1}$
- •A square matrix that does not have an inverse is called non-invertible (or singular)
- •For a square matrix left and right inverse are the same. Rows and columns are linear independent.

Square matrix inverse

Theorem

For a square matrix, the right and left inverse are the same

Proof

0

Invertible (Nonsingular) Matrices

 $\begin{array}{c} \text{Holds in general} \\ \text{left-invertible} & \stackrel{\textbf{(a)}}{=\!=\!=\!=\!=\!=\!=\!=}} \text{ linearly independent columns} \\ \text{Holds for square matrices} & \stackrel{\textbf{(b')}}{=\!=\!=\!=\!=\!=\!=\!=}} \\ \text{linearly independent rows} & \stackrel{\textbf{(a')}}{=\!=\!=\!=\!=\!=\!=\!=}} \\ \text{right-invertible} \\ \text{Holds in general} \end{array}$

Gauss-Jordan Elimination for finding the Inverse of a matrix

Method

- \square Let A be a $n \times n$ matrix:
 - \square Adjoin the identity $n \times n$ matrix I_n to A to form the matrix $[A:I_n]$.
 - \square Compute the reduced echelon form of $[A:I_n]$.
- \square If the reduced echelon form is of the type $[I_n:B]$, then B is the inverse of A.
- \square If the reduced echelon form is not the type $[I_n:B]$, in that the first $n\times n$ submatrix is not I_n then A has no inverse.

 $[A \mid I]$ Gauss—Jordan elimination $[I \mid A^{-1}]$

Important

An n \times n matrix is invertible if and only if its reduced echelon form is I_n .

A is row equivalent to I_n

Inverse (Example)

Example

Find inverse of the following matrix using Gauss-Jordan Elimination:

$$A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$$

$$AX = I \implies \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} x_{11} + 4x_{21} & x_{12} + 4x_{22} \\ -x_{11} - 3x_{21} & -x_{12} - 3x_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

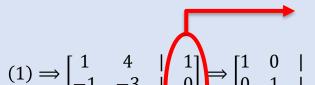
By equating corresponding entries we have:

$$\begin{cases} x_{11} + 4x_{21} = 1 \\ -x_{11} - 3x_{21} = 0 \end{cases}$$
(1)
$$\begin{cases} x_{12} + 4x_{22} = 0 \\ -x_{12} - 3x_{22} = 1 \end{cases}$$
(2)

This two system of linear equations have the same coefficient matrix, which is exactly the matrix A

Inverse (Example)

Rest of The Example



Using Gauss-Jordan Elimination on the matrix A with the same row operations

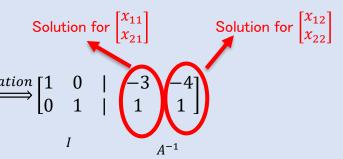
$$(1) \Rightarrow \begin{bmatrix} 1 & 4 & 1 \\ -1 & -3 & 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \Rightarrow x_{11} = -3, x_{21} = 1$$

$$(2) \Rightarrow \begin{bmatrix} 1 & 4 & 1 \\ -1 & -3 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & -4 \\ 0 & 1 & 1 & 1 \end{bmatrix} \Rightarrow x_{12} = -4, x_{22} = 1$$

Thus
$$X = A^{-1} = \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & | & 1 & 0 \\ -1 & -3 & | & 0 & 1 \end{bmatrix} \xrightarrow{Guass-Jordan\ elimination} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

<u>.</u>



Elementary Matrices

Definition

Each Elementary Matrix is E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

Example

Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

Inverse

Definition

Properties (If A is invertible matrix, k is a positive integer and c is a scalar):

$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$

$$A^k$$
 is invertible and $(A^k)^{-1} = A^{-k} = (A^{-1})^k$

$$cA$$
 is invertible if $c \neq 0$ and $(cA)^{-1} = \frac{1}{c}A^{-1}$
 A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$

$$A^T$$
 is invertible and $(A^T)^{-1} = (A^{-1})^T$

Theorem

If A and B are invertible matrices of order n, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A_1 A_2 A_3 \cdots A_n)^{-1} = A_n^{-1} \cdots A_3^{-1} A_2^{-1} A_1^{-1}$$

Inverse

Theorem

The solution set K of any system Ax=b of m linear in n unknows is (so is a linear map T with standard matrix A), s is a particular solution:

$$K = s + Null(T_A)$$

Let Ax = b be a system of n linear equations in n variable.

The system has exactly one solution Cb if and only if A is invertible and $C = A^{-1}$.

Invertible Matrix

Definition

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible

Note

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. det $A = ad - bc$.

 2×2 matrix *A* is invertible if and only if det $A \neq 0$.

Invertible (Nonsingular) matrices

Conclusion

The following are equivalent for a square matrix A:

- ☐ A is invertible
- \square Columns of A are linearly independent
- \square Rows of A are linearly independent
- $\square A$ has a left inverse
- $\square A$ has a right inverse

$$row \ rank(A) = col \ rank(A) = n$$

If any of these hold, all others do

)

Properties

Properties

- $\Box (AB)^{-1} = B^{-1}A^{-1}$
- ☐ If *A* is nonsingular, then A^T is nonsingular $(A^T)^{-1} = (A^{-1})^T$ (sometimes denoted A^{-T})
- \square Negative matrix powers: $(A^{-1})^k$ is denoted by A^{-k}
- \square With $A^0 = I$, Identity $A^k A^l = A^{k+l}$ holds for any integers k, l

Triangular matrices

Theorem

Lower Triangular L with non-zero diagonal entries is invertible

Theorem

Upper Triangular R with non-zero diagonal entries is invertible

C

Why Matrix of Change of Basis is invertible?

Because the column and rows of it is the basis so they are linear independent and invertible

Rank and Inverse

Theorem

Given a square matrix M and its inverse M^{-1} , then M and M^{-1} have the same rank.

O

Rank and Inverse

Theorem

If A is m \times n and B is an n \times n invertible matrix, then rank(AB) = rank(A).

By theorem
$$rank(AB) \leq min(rank(A), rank(B) \Rightarrow$$

$$rank(AB) \le rank(A)[*] \quad rank(AB) \le rank(B)$$

Also, we can write:

$$ABB^{-1} = A \Rightarrow rank(ABB^{-1}) \leq rank(AB) \Rightarrow rank(A) \leq rank(AB)$$
 [**]

so, using [*],[**] then rank(A)=rank(AB)

0

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following are equivalent.

- A is an invertible matrix.
- A is nonsingular matrix.
- A is row equivalent to the n × n identity matrix.
- A has n pivot positions.
- The equation Ax = 0 has only the trivial solution.
- The columns of A form a linearly independent set.
- The linear transformation $x \rightarrow Ax$ is one-to-one.
- The equation Ax = b has at least one solution for each $b \in \mathbb{R}^n$.
- The columns of A span \mathbb{R}^n .
- The linear transformation $x \to Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
- There is an $n \times n$ matrix C such that CA = I.
- There is an $n \times n$ matrix D such that AD = I.
- A^T is an invertible matrix.

Resources

- https://math.berkeley.edu/~arash/54/notes/02 03.pdf
- https://www.ijsr.net/archive/v4i9/SUB156717.pdf
- https://math.colorado.edu/~nita/SystemsofLinearEquations.
 pdf

0